Definition

optical computer (photonic computer)

An optical computer (also called a photonic computer) is a device that uses the photons in visible light or infrared ( IR ) beams,rather than electric current, to perform digital computations. An electric current flows at only about 10 percent of the speed of light. This limits the rate at which data can be exchanged over long distances, and is one of the factors that led to the evolution of optical fiber . By applying some of the advantages of visible and/or IR networks at the device and component scale, a computer might someday be developed that can perform operations 10 or more times faster than a conventional electronic computer.

Visible-light and IR beams, unlike electric currents, pass through each other without interacting. Several (or many) laser beams can be shone so their paths intersect, but there is no interference among the beams, even when they are confined essentially to two dimensions. Electric currents must be guided around each other, and this makes three-dimensional wiring necessary. Thus, an optical computer, besides being much faster than an electronic one, might also be smaller.

Some engineers think optical computing will someday be common, but most agree that transitions will occur in specialized areas one at a time. Some optical integrated circuits have been designed and manufactured. (At least one complete, although rather large, computer has been built using optical circuits.) Three-dimensional, full-motion video can be transmitted along a bundle of fibers by breaking the image into voxels. Some optical devices can be controlled by electronic currents, even though the impulses carrying the data are visible light or IR.

Optical technology has made its most significant inroads in digital communications, where fiber optic data transmission has become commonplace. The ultimate goal is the so-called photonic network , which uses visible andIR energy exclusively between each source and destination. Optical technology is employed in CD-ROM drives and their relatives, laser printers, and most photocopiers and scanners. However, none of these devices are fully optical; all rely to some extent on conventional electronic circuits and components.

This was last updated in March 2011